Evaluation of Effectiveness of LPI Implementations in Tampa Bay

Dr. Pei-Sung Lin. P.E., PTOE. FITE

Program Director

CUTR, University of South Florida

Tampa Bay Area University CTST meeting
July 16, 2025

Outline

- Introduction
- Background
- Research Approach and Methodology
- Field Data Collection
- Results
- Findings and Main Takeaways
- Q&A

Introduction

- Florida ranks among the most dangerous states for pedestrians.
- Severe pedestrian crashes often occur at signalized intersections, especially during conflicts with right-turning vehicles.
- Leading Pedestrian Intervals (LPIs) offer a 3–7 second head start for pedestrians to reduce such conflicts.
- FDOT District 7 leads the state, having implemented LPIs at over 500 intersections.
- This study, sponsored by FDOT District 7, evaluated LPI effectiveness through crash data review, cross-sectional and before-after studies, and field observation.

Background

- LPIs reduce conflicts between pedestrians and right-turning vehicles, with multiple national studies confirming their effectiveness using conflict and crash data analyses.
- FHWA's national study found a 13% reduction in pedestrian crashes and strong Crash Modification Factors (0.87 for total crashes, 0.86 for injury crashes), along with high benefit-cost ratios (207:1 to 517:1) (Goughnour et al., 2018; FHWA).
- Florida has prioritized LPIs as a pedestrian safety strategy, with a 2017 FDOT-sponsored USF study confirming their effectiveness (Lin et al., 2017).
- The USF study emphasized site-specific assessments—including pedestrian and vehicle volumes and intersection geometries, and developed warrants to guide their use (Lin et al., 2017).
- The FDOT Traffic Engineering Manual (TEM) outlines LPI timing guidelines with a typical maximum of 10 for intersections with actuated pedestrian phases, with typical LPIs of 4-7 seconds, and 3 seconds for those operating near capacity (FDOT, 2023).

Research Approach and Methodology

Evaluate LPIs in FDOT District 7 Using Crash Data and Surrogate Driver Behavior Data.

Crash Data Analysis

- Covered 375 intersections across five counties, with focus on incidents near corners and first travel lanes.
- Site classification (downtown, urban, suburban, rural) enabled balanced sampling;
 40 intersections were randomly selected for detailed review.
- Supplemental review included JMT's GIS-based analysis of pedestrian fatalities at 363 LPI sites across pre/post periods.

Research Approach and Methodology (Cont'd)

Driver Behavior Studies

- Used 3 methods
 - Before-and-after (2 sites)
 - Cross-sectional (LPI vs. non-LPI site)
 - Yielding behavior (8 LPI sites)
- Observed 4 key behaviors during the first 5 seconds of "WALK" phase: (1) Full stop,
 (2) Slow & yield, (3) Fail to yield, (4) Conflicts (rare).
- Field observations captured signage, lane use, time of day, and photos; >30 observations per site ensured robust data.

Field Data Collection: LPI Study Sites

E Jefferson St. & Howell Ave

E Fowler Avenue & Bruce B Downs

Park Blvd & 49th St.

Florida Avenue & Kennedy Blvd

W Bush Blvd & North Blvd

US 19 & 1st Avenue N

Tampa St & Kennedy Blvd

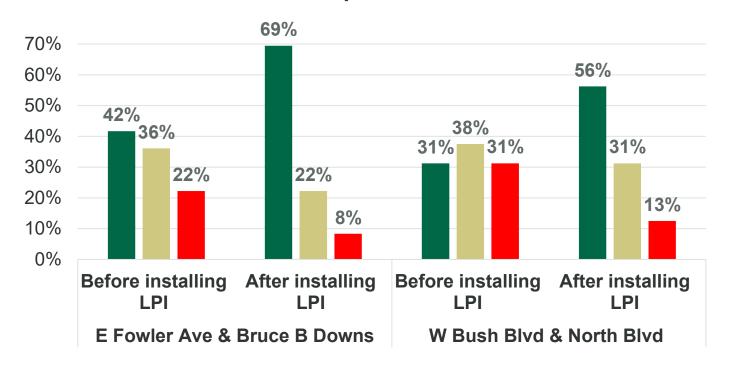
Kennedy Blvd / Rome

Results: CUTR's Pedestrian Fatal Crash Analysis

- Pedestrian crashes may not relate to LPI if occurring outside its active range.
- Only crashes proximity to a corners can be used to evaluate the effectiveness of LPIs, but such proximity data is often unavailable in crash reports.
- 30 intersections showed no pedestrian crashes before and after installing LPI systems.
- 10 intersections lacked sufficient pedestrian crash data to support meaningful conclusions.
- No definitive conclusions were drawn about LPI effectiveness due to limited supporting data.

Results: JMT's Pedestrian Fatal Crash Analysis

Pedestrian Fatal Crashes One Year Before and After LPI Implementations


Pedestrian Fatal Crashes Before/After LPI 363 LPI Locations			
	Before LPI	After LPI	
	April 18, 2020 to	February 13, 2022 to	
	April 18, 2021	February 13, 2023	
	(12 months)	(12 months)	
Citrus	0	0	
Hernando	0	0	
Hillsborough	1	1	
Pasco	3	4	
Pinellas	8	0	
Total	12	5 (-58%)	

Pedestrian Fatal Crashes Two Years Before and About Two Years After LPI Implementations

Pedestrian Fatal Crashes Before/After LPI			
363 LPI Locations			
	Before LPI	After LPI	
	April 18, 2019 to	February 13, 2022 to	
	April 18, 2021	January 26, 2024	
	(24 months)	(23 months and 13 days)	
Citrus	0	0	
Hernando	0	0	
Hillsborough	1	2	
Pasco	3	5	
Pinellas	12	3	
Total	16	10 (-38%)	

Comparing the Impact of LPI Before and After Implementation

- Vehicles are waiting and are not moving.
- Vehicles stop or slow down in front of pedestrians to yield to them
- Vehicles not yielding to pedestrians during the first 5 seconds of signal

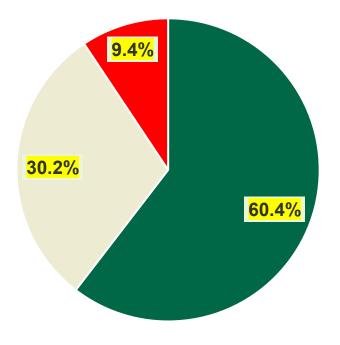

Results: Before LPI vs After LPI

Overall Impact

Comparing LPI Performance between LPI-Installed Site and Controlled Site.

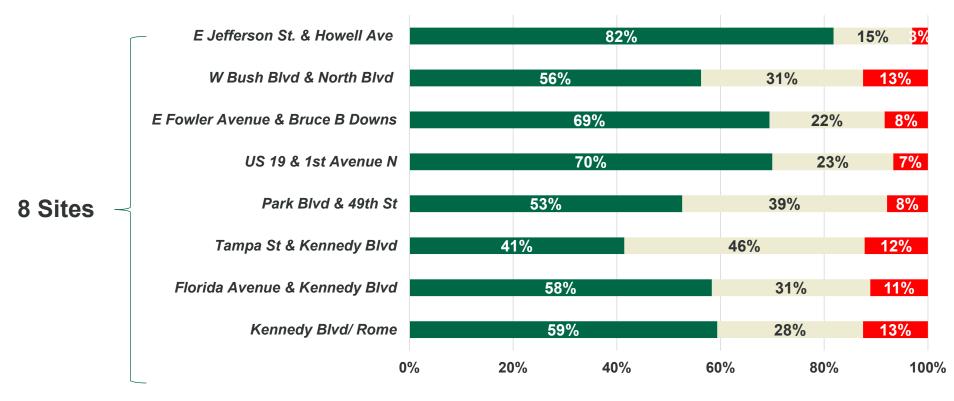
- Vehicles are waiting and are not moving.
- Vehicles stop or slow down in front of pedestrians to yield to them
- Vehicles not yielding to pedestrians during the first 5 seconds of signal

Results: LPI Site vs Controlled Site


Overall Impact

Results: Performance of LPI Sites

Overall LPI Performance at LPI-Installed Sites



- Vehicles are waiting and are not moving.
- Vehicles stop or slow down in front of pedestrians to yield to them
- Vehicles not yielding to pedestrians during the first 5 seconds of signal

Results: Performance of LPI Sites (Cont'd)

Breakdown of LPI Performance at LPI-Installed Sites

- Vehicles are waiting and are not moving.
- Vehicles stop or slow down in front of pedestrians to yield to them
- Vehicles not yielding to pedestrians during the first 5 seconds of signal

Findings and Main Takeaways

Findings:

- Although crash analysis showed a 58% drop in pedestrian fatalities at the intersections
 one-year post-LPI, and a 38% drop over two years, results varied significantly by county,
 and the conclusion of LPI's effectiveness by county was totally different.
- Before-and-after field studies showed a 26% rise in safe driver behaviors (waiting during WALK) and a 16% drop in unsafe actions.
- Cross-sectional study found 19% higher compliance at LPI sites versus non-LPI sites, and an 11% decrease in failure to yield.
- At 8 LPI-equipped sites, 91% of drivers stopped or yielded, with only 9% failing to yield during the WALK phase.
- Individual site compliance ranged from 87% to 97%, confirming LPIs' effectiveness in varied urban settings.

Findings and Main Takeaways (Cont'd)

Key Takeaways:

- LPIs significantly improve pedestrian safety by increasing driver compliance and foster safer interactions between pedestrians and right-turning vehicles.
- LPIs not only improve compliance but also create a predictable and safer environment for pedestrian crossings.
- LPIs offer a low-cost, high-impact strategy to reduce pedestrian-vehicle conflicts.
- Before-after crash analysis for an entire intersection cannot be used to accurately evaluate LPI's effectiveness.
- Field studies are crucial for evaluating behavioral impacts beyond crash data.
- Combining LPIs with blank-out signs could strengthen driver awareness and boost pedestrian protection.

Thank you!

Dr. Pei-Sung Lin, P.E., PTOE. FITE, <u>lin@usf.edu</u>

